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The purpose of the present work is the derivation and evaluation of a priori mesh quality
indicators for structured, unstructured, as well as hybrid grids. Emphasis is placed on
deriving direct relations between the indicators and mesh distortion. The work is based
on use of the finite volume discretization for evaluation of first order spatial derivatives.
The analytic form of the truncation error is derived and applied to elementary types of
mesh distortion including typical hybrid grid interfaces. The corresponding analytic
expressions provide direct relations between computational accuracy and the degree of
stretching, skewness, shearing and non-alignment of the mesh.
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1. Introduction

The drive for field simulations that incorporate complex physics and geometries poses a formidable challenge to grid gen-
eration [1]. The distribution of points and elements can be quite non-uniform and coarse leading to inaccurate computations.
The inaccuracy is often assessed after the simulation is performed causing repetitive grid generations and subsequent field
simulations. It is desirable to have an assessment of the appropriateness (quality) of the mesh before performing the
simulation.

Grid quality is affected by two primary factors; the local size of the computational elements, and the uniformity of the
spatial distribution of the points/elements. A primary method for solving the issue of coarse mesh resolution has been adap-
tive refinement [2–6]. While substantial work has been performed on this type of mesh adaptation, relatively less work has
been devoted to study and improvement of the local distribution of the points, which basically relates to the shape of the
elements. The present work focuses on this contributor to the error. Assessment of adequacy of local resolution and shape
of the elements depends on the discretization error. It is imperative to derive measures of this error in the computation.

Two broad categories of error indicators are: (i) a priori and (ii) a posteriori estimation. The two approaches are basically
complimentary. A priori error evaluation can aid in mesh generation, while a posteriori can provide guidance to mesh adap-
tation techniques during the simulation. The present work falls under the first class, which does not make use of the field
solution. Previous work bases the a priori grid quality assessment on geometric characteristics of the elements such as ratios
of sizes of neighboring elements, as well as on element shape measures, such as angles and ratios of the radii of inscribed to
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prescribed circles [7–11]. In the Finite Element method, the quality of a mesh is often given in terms of the element/mesh
regularity. This type of approach has given measures that can be computed easily and are quite popular with practical
applications.

The present work also assesses grid quality by computing appropriate metrics of the elements. However, there are two
distinguishing aspects of it: (i) the metrics indicating quality are derived directly from related analytic forms of the trunca-
tion error and (ii) can give analytic expressions for reducing the discretization error via re-shaping of the elements.

Truncation error (TE) analysis usually falls under the a posteriori estimation. The Finite Difference discretization method
has offered a vehicle for calculating the TE via performance of Taylor series expansions of the solution at the points forming
the discretization stencil [12]. The complexity of the expressions has led previous work to focus on simplified model field
equations [13–15]. Nevertheless, those works expressed the strong dependence of the solution and the stability of the com-
putations on the grid and its quality.

Direct relations between TE and mesh distortion parameters, such as departure from orthogonality and uniformity have
been reported in [16,17]. Significantly less work exists for unstructured meshes [18] and for the finite volume (FV) method
[19,20]. However, despite the large number of studies on the relation on the TE to the numerical solution, there have been
very few derivations of mesh quality measures based on it.

The primary issue with TE analysis is the complexity of the related expressions, especially for multi-dimensions and for
general hybrid mesh topologies. The present work addresses this complexity barrier via employment of symbolic mathemat-
ics software [21].

A posteriori error estimation methods include the Richardson extrapolation [22–25]. Use is made of two or more grids of
the same domain with the difference in the yielded solution offering a measure of the local error distribution. Generating and
solving on multiple meshes can be quite difficult for practical applications.

Another a posteriori method evaluates the error indirectly via tracking of the numerical solution variation (e.g. [26]). Local
field features, such as boundary layers, shock waves and vortices are detected using sensors that are based on variations of
the computed field parameters, such as the pressure and velocity. The assumption here is that the discretization error is large
where the solution variations are large. The method has been primarily used for guiding grid adaptation. It is not a method
that can directly yield practical assessment of grid quality, taking also into account that it necessitates expensive computa-
tions for large meshes and/or complex fields.

Another school of a posteriori error estimation work employs Finite Element discretization and derives analytic expres-
sions of error bounds [27–30]. Various model equations have been utilized in order to provide the estimates. Although,
the error bounds do not yield grid quality measures directly, there is potential for such use. Again, knowledge of the solution
field is needed.

In Section 2 the analytic form of the TE in the evaluation of the first spatial derivatives is derived. The main types of mesh
distortion are defined in Section 3, while Section 4 relates the TE and mesh distortion. In Section 5, the proposed mesh qual-
ity indices are presented, while Section 6 deals with their application to structured, unstructured and hybrid meshes.

2. Truncation error for hybrid meshes in two dimensions

The goal of the present work is the derivation of a priori quality measures for hybrid meshes. The most fundamental com-
putation is that of first order derivatives. The first derivative is common not only to fluid flow governing equations, but also
to other field equations. The relative reduced complexity of the related mathematics and its commonality led to its choice in
the present work. The finite volume (FV) method will be the method of discretization. A central-type and node-based FV
method is chosen as the vehicle for derivation of quality measures, since it is known to be sensitive to mesh non-uniformity
in terms of its accuracy. The complete expressions for the TE will be presented for meshes that consist of structured, unstruc-
tured, or both types of elements. The complexity of the analytic expressions lead to study of the two-dimensional case, first.

A common FV evaluation of the first order spatial derivatives employs the median dual area around a grid point as 1 de-
picts [31,32]. This quite common FV evaluation is chosen to study quality measures. It is expected to reveal distortions of the
Fig. 1. Median dual surface for evaluating first order derivatives at grid point 0 via the finite volume method.
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mesh as it corresponds to a central differencing and thus deemed sufficient for this study. The evaluation of the gradientru
is accomplished via the following contour integration:
ru � 1
S

I
@l

udl � 1
S

X
e

ueðDye î� Dxe ĵÞ � rhu; ð1Þ
where S is the dual area, ue is the field value at the middle of each edge of the dual contour, while Dxe and Dye are the pro-
jections in the x- and y-direction of the edges of the dual contour joining the centroids of each element sharing point 0 with
the middle of the grid edges sharing this point. This contour is termed median dual [31]. Other choices of dual surfaces in-
clude the surface formed by joining the centroids of the elements sharing point 0 (centroid dual), as well as the surface of the
union of those elements.

Since the goal is deriving a quality measure the specific choice is not important. A node-based evaluation of the deriva-
tives is considered, which will reveal the inaccuracy due to the distorted elements in a relatively straightforward manner.

2.1. The general form of the truncation error

The TE in the computation of the gradient is defined as:
Eðx; yÞ ¼ rhuðx; yÞ � ruðx; yÞ; ð2Þ
withrhu andru being the numerical and the analytical values of the gradient, respectively. The analysis is similar in the x-
and y-directions and employs Taylor series expansions for uh at the required locations around point 0. The expansions are
substituted into the TE definition of Eq. (2). The amount of operations involved is very large. This must have been one of
the main reasons for not seeing complete TE analysis in previous works. In the present work the hurdle is overcome via
use of the symbolic mathematics capability of Matlab [21].

The TE terms are grouped according to the following general form given for the case of evaluating the derivative in the x-
direction ðuh

xÞ:
Ex ¼ ex
xux þ ex

yuy þ ex
xyuxy þ ex

xxuxx þ ex
yyuyy þ ex

xxxuxxx þ ex
yyyuyyy þ ex

xyyuxyy þ ex
xxyuxxy þ . . . ð3Þ
The terms with the symbol e are functions of the metrics of the mesh and will be the vehicle for making the connection of the
TE with mesh distortion. They will be termed error coefficients (EC). Their analytic expressions are grouped according to the
order in terms of the local mesh size h.

The first two terms are involved in the consistency checks of the numerical approximation:
ex
x ¼

1
2S

Xn

e¼1

ðDxe;1 þ Dxe;2ÞDye � 1; ð4aÞ

ex
y ¼

1
2S

Xn

e¼1

ðDye;1 þ Dye;2ÞDye: ð4bÞ
The grid metrics involved in the above expressions are defined as follows:
ðDxe;kÞjðDye;kÞ
l ¼ 1

Ne;k

XNe;k

m¼1

ðxmje;k � x0Þjðymje;k � y0Þ
l
;Dye ¼ ye;2 � ye;1; ð5Þ
where xmje;k; ymje;k and Ne;k are the coordinates and the number of nodes participating in the averaging of u at the dual vertex
e; kðk ¼ 1;2Þ. Generally, if a median dual vertex coincides with the middle point of an edge sharing point 0, then Ne;k ¼ 2, and
if it coincides with the center of a quadrilateral or a triangle then Ne;k ¼ 4, or Ne;k ¼ 3, respectively. In Eq. (5) it is observed
that the metric terms Dxe;1;Dxe;2;Dye;1 and Dye;2 are OðhÞ each.

In the above expressions, n is the number of the dual edges, S is the dual area and it is Oðh2Þ, while e;1 and e;2 denote the
end points of each edge of the dual contour, as shown in Fig. 1.

The next three terms are first order:
ex
xy ¼

1
2S

Xn

e¼1

ðDxe;1Dye;1 þ Dxe;2Dye;2ÞDye; ð6aÞ

ex
xx ¼

1
2S2!

Xn

e¼1

½ðDxe;1Þ2 þ ðDxe;2Þ2�Dye; ð6bÞ

ex
yy ¼

1
2S2!

Xn

e¼1

½ðDye;1Þ
2 þ ðDye;2Þ

2�Dye: ð6cÞ
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For the purpose of deriving quality measures, the second order terms are retained also:
ex
xxx ¼

1
2S3!

Xn

e¼1

½ðDxe;1Þ3 þ ðDxe;2Þ3�Dye; ð7aÞ

ex
yyy ¼

1
2S3!

Xn

e¼1

½ðDye;1Þ
3 þ ðDye;2Þ

3�Dye; ð7bÞ

ex
xyy ¼

1
2S2!

Xn

e¼1

½Dxe;1ðDye;1Þ
2 þ Dxe;2ðDye;2Þ

2�Dye; ð7cÞ

ex
xxy ¼

1
2S2!

Xn

e¼1

½ðDxe;1Þ2Dye;1 þ ðDxe;2Þ2Dye;2�Dye: ð7dÞ
When the projections Dxe and Dye are symmetrical relative to point 0, the computation becomes of second order and the TE
expression reduces to the following:
Ex ¼ ex
xxxuxxx þ ex

xyyuxyy;

Ey ¼ ey
yyyuyyy þ ey

xxyuxxy:
ð8Þ
Meshes that give a TE form given in Eq. (8) will be termed ideal meshes. Orthogonal and equally-spaced in each direction
quadrilaterals form an ideal mesh. The equivalent with triangles is an unstructured mesh with equal-length projections
of their dual edges in the x- and y-directions. This definition will be used subsequently to define a quality measure.

Similar expressions for the EC regarding evaluation of the derivative in the y-direction hold. The projection Dye is replaced
with Dxe and a minus sign is placed in front of the sums. The EC ey

x and ey
y are given below:
ey
x ¼ �

1
2S

Xn

e¼1

ðDxe;1 þ Dxe;2ÞDxe; ð9aÞ

ey
y ¼ �

1
2S

Xn

e¼1

ðDye;1 þ Dye;2ÞDxe � 1: ð9bÞ
2.2. Consistency condition

A consistent discretization of the gradient requires the TE to vanish as the mesh size approaches zero. For zero mesh size
all the EC become equal to zero, except for ex

x; e
x
y in Eq. (4) and ey

x; e
y
y in Eq. (9), and the TE in Eq. (2) becomes:
Ex ¼ ex
xux þ ex

yuy;

Ey ¼ ey
yuy þ ey

xux:
ð10Þ
It is noted that the EC ex
x; e

y
x ; ex

y; e
y
y remain unchanged for fixed-shape mesh elements even if the local mesh size is changing.

For a consistent discretization, it is required that:
ex
x ¼ ex

y ¼ ey
x ¼ ey

y ¼ 0: ð11Þ
Following Eq. (11) the expressions of the EC ex
x in Eq. (4) and ey

y in Eq. (9) show that in order for them to vanish on a general
mesh, the area evaluation of the following two expressions must yield the same result.
Sx ¼
1
2

Xn

e¼1

ðDxe;1 þ Dxe;2ÞDye;

Sy ¼ �
1
2

Xn

e¼1

ðDye;1 þ Dye;2ÞDxe:

ð12Þ
Using the median dual surface, from Eq. (12) it results that the two forms for evaluating the dual area produce the same re-
sult. Specifically, their difference is the following:
X

e

½xe;2ye;2 � xe;1ye;1 � 2x0ðye;2 � ye;1Þ� ¼ 0; ð13Þ
and so ex
x ¼ ey

y ¼ 0 on a hybrid mesh. Carrying out the algebra in the expression of the EC ex
y in Eq. (4)? using the median dual

results:
ex
y ¼

1
2S

X
e

½y2
e;2 � y2

e;1 � 2y0ðye;2 � ye;1Þ� ¼ 0: ð14Þ
Analogously, the EC ey
x in Eq. (9) results to be always zero on a hybrid mesh. So, the median dual surface leads to a consistent

approximation of ru.
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Using the centroid dual, from Eq. (12) it results that the two forms for evaluating the dual area do not produce the same
result on structured meshes. Their difference considering a structured mesh is:
1
8

X
i

½xiðyiþ1 � yi�1Þ þ yiðxiþ1 � xi�1Þ� – 0; ð15Þ
and so ex
x–0; ey

y – 0 on a structured mesh. Carrying out the algebra in the expression of the EC ex
y in Eq. (4) using the centroid

dual it gives:
ex
y ¼

1
8S

X
i

½yiðyiþ1 � yi�1Þ�– 0: ð16Þ
Analogously, the EC ey
x in Eq. (9) is not always zero on structured meshes. So, the consistency of the centroid dual depends on

the geometry of a structured mesh in the approximation of ru.
Using the centroid dual, from Eq. (12) it results that the two forms for evaluating the dual area produce the same result on

unstructured meshes. The difference of the two forms in Eq. (12) considering an unstructured mesh is:
1
6

X
i

½xiðyiþ1 � yi�1Þ þ xiðyiþ1 � yi�1Þ� ¼ 0; ð17Þ
and so ex
x ¼ ey

y ¼ 0 on unstructured meshes. Carrying out the algebra in the expression of the EC ex
y in Eq. (4) using the centroid

dual it gives:
ex
y ¼

1
6S

X
i

½yiðyiþ1 � yi�1Þ� ¼ 0: ð18Þ
Analogously, the EC ey
x in Eq. (9) is always zero on unstructured meshes. So, the centroid dual gives a consistent approximation

of ru on unstructured meshes.
At hybrid mesh interfaces it is difficult to check analytically the consistency of the approximation ofru using the centroid

dual. Despite this fact, it is anticipated that the computation will be inconsistent due to the inconsistency of the centroid dual
expressions on structured meshes.

2.3. Verification of the error coefficients analytic expressions

It is of importance to check the complex expression of the TE using analytic field functions uðx; yÞ. The TE is computed by
substituting the analytic values of the spatial derivatives and the values of the EC in Eq. (3). This will be termed the analytic
TE. The TE is also computed directly by subtracting the analytic expression for ru from the FV expression rhu Eq. (2). This
second approach will be termed numerical TE.

Let us consider a field function uðx; yÞ, which resembles a boundary layer type of flow field with a linear variation in the
streamwise direction:
uðx; yÞ ¼ xy2: ð19Þ
The differences between the analytic and the numerical TE values are calculated for the hybrid mesh of Fig. 2 using both the
median and the centroid dual. A feature of this mesh is a local lateral displacement in the vicinity of an interface point. For the
median dual the distribution of the analytic and the numerical TE is shown in Fig. 3. It is observed that the derived expressions
are coincident within plotting accuracy.
Fig. 2. Hybrid channel mesh.
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886 Y. Kallinderis, C. Kontzialis / Journal of Computational Physics 228 (2009) 881–902
Check of consistency ‘‘experimentally” via successive reductions of the size of the mesh elements may be impractical for
large meshes. An indirect check of the consistency is proposed here by computing the difference between the analytic and
numerical TE, without including in the analytic expression the error coefficients ‘‘responsible” for consistency (ex

x and ex
y).

When including these terms, which are independent of the local mesh size, the difference will be zero within machine accu-
racy. If it is not, as the case is for the centroid dual discretization (see Fig. 4), a local inconsistency is revealed. The ‘‘spikes” in
Fig. 4 correspond to points in the vicinity of the locally distorted mesh interface. The same inconsistency was revealed for the
case of a distorted structured mesh.

Similar results were observed using other field functions, as well. This provides assurance that the derived complex
expressions are correct. A further check of their validity, even though indirect, will be provided when checking the subse-
quently derived quality measures.

3. Elementary types of mesh distortion

The general mesh depicted in Fig. 1 exhibits skewness, stretching, offset of point 0 from the center of the control surface,
as well as interfaces between structured and unstructured elements. It is important in the context of the present work to
‘‘isolate” each type of mesh ‘‘defect” and relate it directly to the TE. This is very important for future work on improving
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the mesh during or immediately after its generation. Distortion types are easier to define on a quadrilateral mesh, compared
to a triangular for which the offset of point 0 from the dual centroid is a reasonable measure. Regarding the interfaces be-
tween quadrilateral and triangular elements, three distinct types were identified and studied. It should be noted that skew-
ness, stretching and center point offset are distortions that are not independent from each other. Application of one of them
to an ideal mesh causes appearance of the rest. Nevertheless, this categorization offers a clear way to express the TE as a
direct function of them and to come up with ways to reduce those distortions. It should be noted that the present work con-
siders interior point configurations. Boundary ‘‘central” points (node 0 in Fig. 1) are not examined as the application of
boundary conditions often ‘‘discards” the local discretization.
a

b

Fig. 5. Stretching for (a) structured and (b) unstructured meshes defined to facilitate comparison of accuracy degradation on them.

Fig. 6. Skewed mesh, depicting the deviation angle x from the 180� angle between one of the two pairs of edges sharing point 0 ðx 2 ½0�;90��Þ. The lengths
of the edges are equal.
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3.1. Stretching

Stretching is a common type of deviation from a uniformly-spaced mesh and it is readily defined for structured grids. In
order to compare quadrilaterals and triangles in terms of sensitivity to stretching, the stretching type of mesh distortion is
defined in a similar way as Fig. 5 depicts. In the quadrilateral case, the stretching is considered as the displacement of the
edges sharing the center point 0 quantified by the stretching factors dx and dy. These edges are displaced in a structured way
retaining their orientation, while stretching in the triangle case is defined via displacing the center node according to
Fig. 5(b).
Fig. 7. Sheared mesh, depicting displacement of the edges causing deviation from orthogonality expressed by the angle /ð/ 2 ½0�;90��Þ. The lengths of the
edges are equal.

Fig. 8. Rotated structured mesh depicting non-alignment of the edges with the axes of the global system (Dx–Dy and h 2 ½0�;45��).

a b c

Fig. 9. Common hybrid mesh interfaces.
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3.2. Skewness and shearing

The four edges sharing the center point 0 in a quadrilateral grid usually meet forming angles that deviate from 180� as
Fig. 6 illustrates. This type of distortion is typically called skewness. The angle x quantifies the degree of skewness and ranges
from 0� to 90�. Shearing is quite different from skewness. It preserves the 180� angle between the edges and deviates the
mesh from being orthogonal (Fig. 7). The angle / quantifies this deviation and ranges from 0� to 90�. It will be seen that
shearing and skewness affect the accuracy very differently.

3.3. Mesh rotation

Non-alignment of a structured mesh to a specific direction dictated by the form of the field is another type of distortion
examined. The quadrilateral elements are rotated with respect to the x-axis of the coordinate system by an angle h as illus-
trated in Fig. 8. This angle varies from 0� to 45�.
Table 1
Expressions for the error coefficients for each type of mesh distortion.

Mesh ex
xy ex

xx ex
yy ex

xxx ex
yyy ex

xyy ex
xxy

Fig. 5(a) 1
2 dyDy dxDx 0 –0 0 –0 –0

Fig. 5(b) dyh dxh 0 –0 0 –0 –0
Fig. 6 3 sinð2xÞDx

8 cosðxÞþ8
½cosðxÞ�1�Dx

2
½1�cosðxÞ�Dx

4 –0 –0 –0 –0
Fig. 7 0 0 0 –0 0 –0 –0
Fig. 8 0 0 0 –0 –0 –0 –0

Table 2
Expressions for the error coefficients for the hybrid mesh interfaces.

Mesh ey
xy ey

xx ey
yy ey

xxx ey
yyy ey

xyy ey
xxy

Fig. 9(a) 0 � h
48 0 –0 –0 –0 –0

Fig. 9(b) 0 0 � h
10 0 –0 –0 –0

Fig. 9(c) � h
6 0 0 0 –0 –0 –0

Table 3
Central interface point displacements for improving the accuracy of the uy derivative evaluation for the hybrid mesh interfaces.

Mesh Dx Dy

Fig. 9(a) non existent non existent
Fig. 9(b) 0 2ð�10þ 3

ffiffiffiffiffiffi
11
p
Þh

Fig. 9(c) � h
6 0

Table 4
Characteristic local lengths for the hybrid mesh interfaces.

Mesh Lx Ly

Mesh interface of Fig. 9(a) 11
12 h h

Mesh interface of Fig. 9(b) h h
Mesh interface of Fig. 9(c) h h

Fig. 10. High aspect ratio quadrilaterals typical of a structured mesh in a boundary layer region.
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3.4. Hybrid mesh interfaces

Change in the topology of the elements creates special interfaces which require examination in terms of the local accu-
racy of the discretization [33]. The elements forming the interface (quadrilaterals and triangles) are considered to have the
0 0.1 0.2 0.3 0.4 0.5
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Fig. 11. Mesh quality index Qx for the stretched unstructured mesh ð�Þ and the stretched structured mesh ð�Þ vs. displacement factor dx (dy ¼ 0).
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Table 5
Mesh quality index Q expressions for the elementary types of mesh distortion.

Mesh Q

Stretched structured Fig. 5(a) Qx ¼ dx

1þd2
x

����
����þ dy

2þ2d2
y

����
����

Stretched unstructured Fig. 5(b) Qx Eq. (A-1)
Skewed Fig. 6 Qx Eq. (A-2)
Sheared Fig. 7 Qx;Qy ¼ 0
Non-aligned structured (Fig. 8) Qx;Qy ¼ 0
Mesh interface Fig. 9(a) Qy ¼ 1

44

Mesh interface Fig. 9(b) Qy ¼ 144
533

Mesh interface Fig. 9(c) Qy ¼ 1
6
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same size so that the effect of the changing topology is isolated and studied. Three cases of such interfaces are identified in
two dimensions and are illustrated in Fig. 9.

4. Direct relation between truncation error and mesh distortion

The general expressions of the error coefficients (EC) given in Eqs. (6) and (7) can yield simpler expressions directly related
to each type of mesh distortion presented here. This is very important to subsequent work on improving the grid.

Table 1 gives the expressions of the EC for a mesh exhibiting only one type of distortion for each case (a row of the table).
The related parameters dx; dy;x are present in the expressions. For clarity of the table, the terms related to the higher order
EC are not given, and it is just noted if they are zero or not. It is observed that stretching and skewness reduce the formal
second order of the FV discretization to first. The error is proportional to the stretching parameters dx and dy. In the case
of skewness, the relationship with x is not linear. Finally, for the case of shearing and non-alignment of a structured mesh,
no reduction of the order of accuracy occurs. However, the structure of the TE changes (terms ex

xxx; e
x
yyy; e

x
xyy and ex

xxy) but the
discretization remains second order.

The EC corresponding to evaluation of the derivative uy of the three types of hybrid mesh interfaces are presented in Table
2. For the first type of interface, it is considered that w1 ¼ w2. It is observed that mesh interfaces yield first order accuracy for
the evaluation of the derivative uy.

However, it is possible to relocate node 0, so that the order of accuracy of the uy evaluation is improved, but only for the
mesh interfaces of Figs. 9(b) and (c). In Table 3 the displacements of point 0 for improving the accuracy of the uy evaluation
are given. It should be noted that the results of Table 3 concern interfaces with equal ‘‘heights” ðhÞ of the elements.
5. Definition of an appropriate index of mesh distortion

The focus of the present work is on a priori evaluation of a grid with regards to the shape and topology of its elements. The
other aspect of grid quality, namely the local resolution is not addressed here. Therefore, the defined measure (index) of
mesh distortion should be independent of the local size of the mesh. Other properties that this index should have include:

(1) simple mathematical form,
(2) direct relation with the TE, as well as the mesh distortion parameters,
(3) ability to capture distortions in any direction, and
(4) ability to detect relatively small distortions in the presence of larger ones.
5.1. Normalized error coefficients

The EC of Eqs. (6) and (7) are divided by the appropriate power of a characteristic local length scale L. Care must be taken
in order to account for directionally-sized (high aspect ratio) local mesh elements. This implies appropriate use of two length
scales ðLx; LyÞ expressing the local size in the x- and y-direction, respectively.
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Fig. 13. Mesh quality index Qy for the hybrid mesh interface of Fig. 9(a) vs. angle w2.
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The ‘‘normalized” EC of Eqs. (6) and (7) are defined as:
ex
xx ¼

ex
xx

Lx
; ex

yy ¼
ex

yy

Ly
; ex

xy ¼
ex

xy

Ly
; ð20Þ

ex
xxx ¼

ex
xxx

L2
x

; ex
yyy ¼

ex
yyy

L2
y

; ex
xxy ¼

ex
xxy

L2
y

; ex
xyy ¼

ex
xyy

L2
y

: ð21Þ
The denumerators in the above definitions have been chosen based on the mesh metrics appearing in the EC expressions and
the order of each EC.

Carefull consideration is needed to define the characteristic local length. It is incorrect to define a single length for every
direction, as then, on meshes with cells of high aspect ratio, the normalized EC would either be overestimated or underes-
timated. The present work uses an approach that resembles the FV evaluation of the derivative. It defines the following grid
functions:
fx ¼ Dxe;kjDxe;kj; f y ¼ Dye;kjDye;kj; k ¼ 1;2: ð22Þ
Then, the lengths Lx; Ly are computed in a similar manner to Eq. (1) with u being replaced by fx for the x-component and by fy

for the y-component:
Fig. 14. Locally stretched structured channel mesh: (a) mesh geometry, (b) index q and (c) index Q.
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Lx ¼
1
S

X
e

fx;eDye; Ly ¼ �
1
S

X
e

fy;eDxe ð23Þ
It should be noted that for a uniform structured mesh with element sizes Dx and Dy, the characteristic lengths are:
Lx ¼ Dx and Ly ¼ Dy:
For the case of a uniform (honeycomb shape) triangular mesh of edge size h, the local lengths are:
Lx ¼
35h
48

and Ly ¼
7
ffiffiffi
3
p

h
16

:

Fig. 15. Locally stretched unstructured channel mesh: (a) mesh geometry, (b) index q and (c) index Q.
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Also, for the examined hybrid mesh interfaces the characteristic local lengths are given in Table 4.

5.2. Mesh quality index

The normalized EC are grouped to yield a single number that characterizes the quality of the grid. Two such groupings are
being presented and evaluated.

The first is expressed via use of the first order error coefficients:
Qx ¼ jex
xxj þ jex

yyj þ jex
xyj; ð24aÞ

Qy ¼ jey
xxj þ jey

yyj þ jey
xyj: ð24bÞ
Fig. 16. Hybrid channel mesh: (a) mesh geometry, (b) index q and (c) index Q.
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where the first expression regards the ux-derivative evaluation, and the second concerns the uy computation. On meshes
which yield second order accuracy in the evaluation of the derivatives ux and uy, both Qx and Q y are equal to zero.

The second index that is presented expresses the deviation of a mesh from being ideal via the ratio of a form of the EC
appearing on a general distorted mesh to a form of those coefficients for an ideal mesh. Specifically:
qx ¼
jex

xxj þ jex
yyj þ jex

xyj þ jex
xxxj þ jex

yyyj þ jex
xyyj þ jex

xxyj
jex

xxxj þ jex
xyyj

; ð25aÞ

qy ¼
jey

xxj þ jey
yyj þ jey

xyj þ jey
xxxj þ jey

yyyj þ jey
xyyj þ jey

xxyj
jey

xxxj þ jey
xyyj

: ð25bÞ
Index q expresses the deviation of the mesh locally from being ideal. It should be noted that qx and qy are equal to one for an
ideal mesh, and have values greater than one for a general distorted grid.

It is interesting to examine the values of the indices for a structured mesh with high aspect ratio elements that is typical
of boundary layer regions and illustrated in Fig. 10.

The relevant computation here is that of the derivative uy. The relevant EC in Eq. (8) for this case are:
ey
xxy ¼

ðDxÞ2

8
; ey

yyy ¼
ðDyÞ2

6
;

which yields the mesh quality index Q y to be zero and the qy to be one, which are the best possible quality index values.
The experiment is repeated employing the triangular mesh created by subdividing the quadrilaterals of Fig. 10 along their

diagonals. The corresponding error coefficients are:
ey
yyy ¼

ðDyÞ2

6
; ey

xyy ¼ �
DxDy

6
; ey

xxy ¼
ðDxÞ2

6
:

It is observed that the order of accuracy remains second ðQ y ¼ 0Þ. However, more non-zero EC appear and the value of qy is
not that of the ideal mesh, but is greater than one.
Fig. 17. O-type structured mesh around a NACA 0012 airfoil: (a) mesh geometry, (b) index q and (c) index Q.
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5.3. Analytic expressions of the quality index Q for each type of elementary mesh distortion

The index Q has a simpler mathematical form and thus amenable to a direct relation to each type of mesh distortion. These
expressions are given in Table 5. The equations for the stretched unstructured and the skewed structured mesh cases are
given in Appendix A. It is observed that, the sheared and rotated (non-aligned) structured meshes do not exhibit reduction
Fig. 18. Unstructured mesh around a NACA 0012 airfoil: (a) mesh geometry, (b) index q and (c) index Q.
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of accuracy and thus the indices are equal to zero. The unstructured mesh exhibits higher sensitivity in mesh distortion as it
is depicted graphically in Fig. 11. The variation of the index with respect to the skewness angle is given in the Appendix A,
and it is shown graphically in Fig. 12. A peak in the degradation of accuracy is observed at about 80�. It is observed that the
normalized error coefficient ex

xy reduces as the skewness angle approaches 90�, which leads to the reduction of Q x in the
Fig. 19. Hybrid mesh around a RAE 2822 airfoil: (a) mesh geometry, (b) index q and (c) index Q.
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same region in the graph. Finally, the influence of the mesh interface angle w2 on degradation of accuracy is shown in the
graph of Fig. 13. This concerns the hybrid mesh interface shown in Fig. 9(a). The curve is symmetric around the value of
tan�1ð2Þ � 63� for which Q y is minimum.

5.4. Calibration of the mesh quality index Q

Any practical use of the grid quality index to judge a mesh requires knowledge of the range of permissible values of Q. A
calibration is needed which is based on upper values of stretching dx; dy and skewness x that are considered acceptable for
typical field solvers. The proposed calibration has a conservative character as the upper bound for index Q is chosen as
maxðQx;Q yÞ. An upper value of 20% stretching means a value of dx and dy of 1

11, which when substituted in the expression
for Q yields a value of approximately 0.13. Similarly for a maximum skewness angle x of 20�, a value of Q � 0:17 is found.

Considering the case of a stretched unstructured mesh and applying the same stretching (center node displacement fac-
tor) of 20% a value of Q � 0:24 is found. Finally, for the hybrid mesh of Fig. 9(a), setting w2 ¼ tan�1ð2Þ � 20� with
w1 ¼ 2 � tan�1ð2Þ � w2, an upper bound of Q � 0:16 is derived. Therefore, an upper bound value for Q of around 0.20 is a rea-
sonable choice for all types of mesh distortion.

6. Application of the mesh quality indices

The quality index Q that is based on the first order error terms appears to be quite simpler to use compared to the index q
that uses both the first and the second order terms. However, a decision to adopt Q cannot be made until both of them are
implemented with general distorted meshes. This section employs three types of grids; structured, unstructured, as well as
hybrid. The hybrid grids consist of separate quadrilateral and triangular layers, which is quite typical in applications. The
Fig. 20. Structured mesh around a cylinder: (a) mesh geometry, (b) index q and (c) index Q.
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geometries involved are channel, airfoil and cylinder. It is important that the employed grids exhibit (i) both small and large
magnitude distortions, as well as (ii) local and more global ones. The contours of the functions Q � maxðQx;QyÞ and
q � maxðqx; qyÞ are plotted for all cases.

In order to compare the effectiveness—fidelity of the indices for the different cases, the same contour levels are plotted,
that is the minimum, maximum and number of levels are the same for all grids for each index. Further, both indices (Q and q)
are shown with the same number of contour levels, which is essential for comparing the two on the same mesh.

6.1. Channel grids

The structured channel grid shown in Fig. 14 is uniform everywhere except in the middle where a point is displaced. Both
indices capture this distortion with index Q-contours being more focused. The same displacement is applied to an almost
uniform triangular mesh shown in Fig. 15. Similarly here, both indices capture the primary distortion along with smaller
ones with q capturing a bit broader area than Q. This is due to the second order EC included in the definition of index q.

The third mesh is hybrid with a straight line transitioning from the quadrilaterals to the triangles shown in Fig. 16. The
index Q is more focused on the interface region than index q does.

6.2. Airfoil grids

An O-type structured mesh for the NACA 0012 airfoil is employed next. There is a sudden expansion of the quadrilaterals
size in the region close to the surface as shown in Fig. 17. The same observation is made here, namely Q captures the areas of
mesh stretching and skewness (leading and trailing edge regions) stronger compared to index q.
Fig. 21. Unstructured mesh around a cylinder: (a) mesh geometry, (b) index q and (c) index Q.
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The unstructured mesh around the NACA 0012 shown in Fig. 18 is a good quality mesh with small distortions everywhere.
This case was devised to check the indices’ sensitivity to relatively small (‘‘background”) distortions. It is observed that both
indices show sensitivity to these non-uniformities with q being more sensitive to them.

Finally, a hybrid mesh around the RAE 2822 airfoil is employed (Fig. 19). This is a viscous mesh with a very good pres-
ervation of the order of accuracy in the boundary layer region, except at the mesh interfaces, as indicated by index Q. How-
ever, index q shows a large deviation from the ideal computation for the boundary layer region due to the non-alignment of
the structured mesh in that area with the axes of the system of reference.
6.3. Cylinder grids

The cylinder mesh has mild distortions away from the body surface. It is an interesting case to check the performance of
the quality indices at the farfield. Fig. 20 illustrates the structured mesh which exhibits skewness along lines ‘‘diagonally” off
the surface. The grid is of good quality close to the cylinder and this is indicated by both indices. It is observed that the four
‘‘skewness lines” are captured more clearly by index Q.

The next case involves a triangular grid exhibiting a large stretching area close to the surface, as well as a mild mesh dis-
tortion of irregular shape away from the cylinder (Fig. 21). The two indices do recognize both types of distortion, and their
contours ‘‘follow” the mild distortion pretty closely.

Finally, the hybrid grid of Fig. 22 exhibits irregularity of the interface between the quadrilaterals and the triangles, as well
as quite strong distortions in the farfield. It is observed that both indices recognize both types of strong distortions; the cir-
cular-shaped interface and the ‘‘random” ones in the triangles zone.
Fig. 22. Hybrid mesh around a cylinder: (a) mesh geometry, (b) index q and (c) index Q.
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7. Summary

The present work developed and evaluated a priori indicators of mesh distortion. This was accomplished by deriving the
complete truncation error expression for the Finite Volume discretization of the field gradient in two dimensions. The com-
plexity of the mathematical operations involved was overcome via use of symbolic mathematics software.

The presented work analyzed a generally-distorted mesh (structured, unstructured and hybrid) into elementary distor-
tions (stretching, skewness, shearing, rotation), as well as three common types of interfaces, and those were directly related
to the TE. The derived analytic expressions are relatively simple and amenable to future work on improving the mesh. This is
especially true for index Q for which analytic expressions were presented directly relating it to the degree of stretching and
skewness, as well as to hybrid mesh interfaces.

The two indices (Q and q) ‘‘followed” the grid distortion quite faithfully with Q being more focused on these local areas.
Index q marks broader areas of the mesh due to the second order error terms included in its definition. It also picks-up small
(background) distortions which may not be of interest. Given the fact that Q is quite simpler to calculate, it is the recom-
mended quality index. A disadvantage of Q is that it cannot indicate the quality of distorted meshes that still yield second
order accurate computation of the gradient. Shearing and rotation do change the TE (i.e. only index q ‘‘picks them” up) but
they do not reduce the order of accuracy. However, the goal is to fix meshes that degrade the accuracy to a lower order.

The following observations were also made for both indices: (i) irregularly-shaped small distortions were captured faith-
fully, (ii) small distortions were detected even though much larger ones existed in the mesh, and (iii) distortions were cap-
tured in any direction.

Employment of the centroid dual discretization must be avoided on general structured and hybrid meshes due to its
inconsistency in the evaluation of the field gradient.

Future work involves two directions: (i) working the analytical expressions for the three-dimensional case for hybrid
(structured/unstructured) grids, and (ii) using the analytic expressions of the present work for a priori improvement of
the mesh.

Appendix A

Mesh quality index Qx for the stretched unstructured mesh of Fig. 5(b):
Q x ¼
96
7

dx

j1þ 2dxjð1þ 2dxÞ þ 4ð1þ dx2Þ þ j2dx� 1jð1� 2dxÞ

�����
�����

þ 32
7

ffiffiffi
3
p dy

ð2dy�
ffiffiffi
3
p
Þ½j2dy�

ffiffiffi
3
p
j þ j

ffiffiffi
3
p
þ 2dyj� þ 2dy

�����
�����: ðA-1Þ
Mesh quality index Qx for the skewed mesh of Fig. 6:
Q x ¼
1� cos2ðxÞ

2½cos2ðxÞ þ 1� þ
cosðxÞ � 1

cos2ðxÞ � cosðxÞ � 4
� 3 sinð2xÞ

2½cosðxÞ þ 1�½cos2ðxÞ � cosðxÞ � 4� : ðA-2Þ
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